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Abstract—An absolute calibration procedure for periodic micro-

wave phase shiiters is described. Increments on the phase shifter

are compared by substitution with a reproducible phase-shtit step of

initially unknown value. The periodic nature of the phase shtiter pro-

vides a reference phase shift of 360°, and alternative methods are

outliied for the derivation of the correction curve from the step mea-

surements. It is shown that the accuracy of the calibration is gov-

erned by the precision and reproducibility of the phase shifter under

test.

I. INTRODUCTION

T
HIS PAPER shows how an accurate calibration

of a cyclic microwave phase shifter of the Fox

type [1] can be made using a simple experimental

procedure and without the use of a primary phase stan-

dard; however, a computer is needed for data reduction.

Calibrations of phase shifters have been made in the

past by complicated procedures using several similar

phase shifters [2] or by recourse to a complex primary

standard of extreme mechanical precision, requiring

careful retuning for each new frequency [3]. In the

latter method, the phase shift produced by the standard

[4] is a function of the position of a movable part that

has to be set, and its position read, with high accuracy.

An excellent bibliography up to 1966 can be found

in [5].

In the method to be described, advantage is taken of

the periodic nature of the Fox-type phase shifter, 1 and,

as will be shown, this type of instrument may be cali-

brated by this method with such accuracy that it may

serve as a transfer standard to calibrate nonperiodic

phase shifters.

II. DESCRIPTION OF THE METHOD

It was suggested by one of the authors (D. L. Hollway)

that the calibration of a cyclic phase shifter of the Fox

type could be carried out using a highly reproducible

phase-shift step of an initially unknown value. Such a
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1 Strictly speaking, the Fox-type phase shifter is periodic in 720
electrical degrees, corresponding to one complete rotation of the
tunnel.

A well-made phase shifter will also be periodic in a one-half rota-
tion of the tunnel (360° on the scale). In practice, this has been found
to be true. If not, then the cycli~ interval referred to in this paper as
360 electrical degrees should be increased to 720 degrees.

phase-shift step may be realized by inserting a dielectric

flap through a central broad-wall slot into a waveguide

to a precise depth. In further references this device will

simply be called the ‘i flap.” Briefly, the principle of

measurement is to record a set of phase-difference read-

ings due to the insertion of the flap and to compute the

correction curve from these differences, knowing that

the readings correspond to points separated by an ini-

tially unknown but constant phase shift.

A. Measuring Setup

A bridge circuit is used having a sensitive phase-

quadrature indication, which has been shown to be level

insensitive to the first order [6].

The phase shifter under test (PSUT) and the flap are

connected in tandem in the same arm of the bridge, are

adequately isolated, and are operated between matched

ports. 2

The other arm of the bridge contains an auxiliary

phase shifter used to set the initial balance before each

measurement is taken. Bridge errors do not affect the

results because each measurement is a direct substitu-

tion between the flap and the PSUT, the total phase

shift in the measuring arm remaining constant.

Fig. 1 shows the bridge used in our measurements.

This was a slightly modified version of the locating

reflectometer [7], [8], operating in the band 8.2–12.4

GHz and set to display on an oscilloscope, the trans-

mission coefficient of the measuring arm on an expanded

Smith chart. The criterion for bridge balance was the

crossing of the real axis by the spot, which moved close

to the outer perimeter of the chart because of the low

attenuation of the measuring arm. Final balance was

indicated by a null detector having a sensitivity of

+ 0.010 change in phase shift for full-scale indication,

To utilize this sensitivity, the microwave frequency was

phase locked to a harmonic of a temperature-stabilized

crystal oscillator, and the measuring and reference arms

of the bridge were made equal in length to minimize the

effects of room-temperature variations. For example, at

10.6 GHz a phase shift of O.O1° corresponds to only l-pm

relative change in the lengths of the two bridge arms.

z The flap need not necessarily operate between matched ports,
provided that the phase indication is sufficiently insensitive to the
level change caused by the variation in the mismatch loss when the
flap is inserted.
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Fig. 1. Microwave phase bridge modified from the locating reflectometer [8].

B. Method of Measurement

In the method to be described, all measurements are

made in pairs of readings of the PSUT. Each pair con-

sists of an initial reading, denoted by Pi, made with the

flap ‘(in” and a second reading Q; made after adjusting

the PSUT to restore balance with the flap ‘(out. 7’ The

initial value of each pair is set exactly on a cardinal

point by adjusting the auxiliary phase shifter, so pro-

viding a calibration at regular settings of the dial. The

flap value may be chosen to lie anywhere in a broad

optimum range, discussed in Section IV, For example,

in a typical measurement, using a flap near 18.3°, the

initial readings may be stepped at 10° intervals giving

36 pairs of values Pi, Qi, e.g., 0°, 18,4°; 10°, 28.35°; 20°,

38.25°; . . . corresponding to the flap ‘(in” and ‘(out, 7’

respectively. The departures of QJ —Pi from the true

flap value F are due to the errors of the PSUT. Our aim

is to determine the correction curve of the PSUT from

these strings of numbers.

In one variant, which we term the “quasi-buildup”

method, the flap value is chosen to bring the second

value of a pair quite close to the next initial value. This

is of some advantage when the results are to be ana-

lyzed by the ‘(interpolation” method, as will be de-

scribed.

1I 1. METHODS OF COMPUTATION

Two methods of computing the error curve from the

string of pairs of readings have been used: Fourier

analysis and interpolation. Both methods are capable

of producing accurate correction curves. However, be-

cause the Fox-type phase shifter is an inherently cyclic

instrument, the Fourier method has the advantage that,

from the spectrum of the correction curve, it is often

possible to identify and measure the contributions from

different causes, as will be shown in Section V. Also, the

Fourier method yields the calibration curve in an ex-

plicit form that may be used to evaluate the correction

at any required point.

A. Interpolation Method

Let C(PJ and C(QJ denote the corrections that must

be added to the initial and final scale readings of the

pair Pi and Q~, and let the total number of pairs of

readings be N, spaced so that the interval between suc-

cessive initial readings is 1 ( = 360/N degrees).

For every interval, the true phase change between

Pi and Q; is equal to the flap value F, or

Qi + C(Qi) – (Pi+ C(l’i)) = F. (1)

To derive a first approximation to the correction

curve from these readings, it will be assumed that the

correction curve is sufficiently smooth to allow us to

relate C(PJ with C(Pi+J by assuming that the rate of

change of the correction in the interval Pi to Pi+l is
equal to the rate of change in the range Pi to Qi obtained

from (1); thus

C(Q,) – C(Pi) F _ ~ ~ C(Pi+~) – C(P.J
. (2)

Q,– P; ‘Qv P, I

In the “conventional” buildup process used in other

fields of measurement, it is usual to make Q, closely

equal to Pi+l and to assume that C(Q,) = C(p,+l). We
have derived the more general procedure based on (2)

because it is applicable even when the corrections are
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comparatively large, and because F need not be set

closely equal to 1.

It is convenient to specify the corrections with respect

to that at the first point by letting C(P1) = O; then the

correction at any subsequent reading Ph is given by

k– 1
c(~k) = ~ (C(P,+I) – C(P,))

i=1

(3)

Because the phase shifter is cyclic, the correction

curve closes on itself after 360° and therefore C(.P~+l)

= C(-?l). Using this and setting k = N+ 1 in (3) provides

a close approximation to the flap value

(4)

The next step in the interpolation procedure is to use

these values of C(Ph) to obtain a related set of correc-

tions at the Q points: C(Q~). The correction at each

reading Qh is obtained by using Stirling’s formula to

interpolate between the corrections at the five P read-

ings closest to Qh; for example, if F= 11° and Z = 10°,

the closest five corrections would be C(PLI), c(~k),

. . . c(Pk+3) .

Th~se computed corrections are then added to the

appropriate P and Q readings to obtain improved sets

of P’ and Q’ closer to the true phase shifts corresponding

to the dial readings P and Q. This more accurate set of

P’, Q’ is then fed back into (4) and (3) to start the next

cycle of iteration. After each cycle, the flap value and

corrections are tested by substitution in (1) and the

iteration is stopped when the maximum discrepancy,

for any value of i, is sufficiently small. Between two and

eight iterations are usually required.

In practice, the convergence may be improved by

changing the procedure so that the rate of change of

correction in each interval, (C(Pi+l) —C(P;) )/1, is com-

puted, not directly from (2), but by interpolation be-

tween the nearest five known rates of change, viz.,

(C(Qj) – C(Pj))/(Q, –Pj), where j takes integral values

from ;–2 to ii+2.3 Results computed by this method

are shown in Fig. 3(a).

B. Fourier Analysis

For clarity in describing the method, let us assume

that the correction curve, shown in Fig. 2, is a pure sine

wave:

C(a) = Al sin a (5)

where a is the setting of the dial. For phase shifters of

fair quality A, is 3° or less.

3 Full details of these methods cannot be given here. We shall be
pleased to send to readers additional information and copies of the
computer programs, written in Fort ran IV or in Basic.

%

NOMINAL PHASC SHIFT. a [

Fi=F-Oi=F

Sinusoidal error curve of hypothetical phase shifter illustrat-
- ing the measurement of an interval (Q; —PJ with a dielectric-flap

phase step of F degrees.

To start the computation, an initial value of F is
obtained from (4), which in practice gives a closer ap-

proximation to the true value than simply averaging

all Qi —Pi. The approximation is then made of neglect-

ing the small corrections to be applied at the two dial

settings to get the true phase shift, i.e., Qi =Pi+F. This

approximation may be used in the analysis without loss

of accuracy because the results are corrected by an

iterative procedure.

substituting Q, =Pi+F into (5) we obtain

C(Q;) = AI sin (P, + F)

= Al(sin Pi cos F + cos P, sin F). (6)

The apparent change in the flap value from pairs of P

and Q is the difference between the corrections at Q;
and Pi, shown as Di in Fig. 2. Combining (5) and (6)

we obtain the following expression for Di:

D, = C(Qi) – C(l’i) = 2A, sin (F/2) cos (Pi+ F/2). (7)

Thus for a PSUT having a sinusoidal correction curve,

the ‘(measured” curve would be a cosine with the same

frequency, but of different amplitude and phase. In

practice it is the measured curve that is available from

the series Pi and Qi, and if the flap F is known, we may

derive the correction curve of the instrument. Let us

assume a measured curve given by

Qi–Pi–F= Di=C(Qi)–C(Pi) = A COS (Pi+@). (8)

Since (8) is analogous to (7), by comparing (7) with (5)

we may write the expression analogous to (5), which is

the correction curve in terms of the measured curve:

A
C(a) = sin (a + + – 17/2). (9)

2 sin (F/2)

When carrying out an actual measurement, the

measured curve D; (i= 1 to N) will not be a pure sinus-

oid; however, a Fourier analysis will reveal its constit-

uent sinusoids (after the cosine and sine pairs have

been combined into a single cosine curve), and (9) may

be applied to each harmonic of the measured curve in

turn, yielding the corresponding harmonics of the first
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approximation to the correction curve. Thus

Am
cm(a) =

2 sin (mF/2)
sin (a + Om – nzF/2). (10)

Note that F has to be multiplied by the harmonic num-

ber m because the period of the mth harmonic is m times

shorter than that of the fundamental component of the

correction curve.

The instrument’s correction curve is then synthesized

from the Fourier components (10) in the usual way:

c(a) = ~ (%((2) (11)
m=1

where k is the highest permissible harmonic number,

which is half the number of the measured pairs of points,

i.e., h = iV/2. The harmonic of order h is not calculable

fully, since for this harmonic only two points are avail-

able per wave. In practice, the number of harmonics to

be used in the calibration must be decided initially and

N must be made large enough to define these harmonics

fully.

From this approximation to the correction curve

C(CY), a more accurate value for the flap is computed in

the following way. An improved value of phase shift is

computed at all the measured points by adding the

values of the corrections to these, and the differences

between the corrected measured points,

F, = Q,+ C(Q,) – (Pi+ C(PJ) (12)

are used to compute a more accurate flap value by

inverse averaging Fi according to (4), as before. If the

computed correction curve were a perfect description

of the errors of the PSUT, all the Fi values of (12) would

be the same. Because of the approximation made in the

computation, Fi will vary with i, but to a lesser extent,

and these variations represent the inaccuracies of the

correction curve just computed.

The departures of Fi from the newly computed flap

value may be regarded, for the purpose of computation,

as a measurement, since our original measurement con-

sisted of noting departures from a constant flap value

caused by the errors of the PSUT. Thus the series Di
= Fi – F may be fed back to the beginning of the pro-

gram, and a correction curve to the previous correction

curve may be computed and then added to it to obtain

an improved correction curve to the PSUT. The largest

(absolute) value of Di, termed the “maximum inconsis-

tency” Di~~., is noted and the iteration is stopped when

Dimax is not Smaller than its previous value. It has been

found in practice that about five iterations are needed

to obtain the final correction curve. After each, Dimax is

printed out together with i, the index of the reading

pair at which the maximum occurs. If i stays constant

for the first few iterations, for cases where the highest

harmonic order used is less than N/2, it means either

that the instrument has a local anomaly on its dial near

the ith pair of readings, which is hard to fit in a least-

squares sense,d or that either Pi or Q, has been misread.

A virtue of the method is that the suspected points can

be remeasured later without having to repeat the whole

calibration.

After completing the final calculation of the correction

curve, the result is plotted, tabulated, and its Fourier

components are printed out. This Fourier spectrum

may reveal hidden characteristics of the PSUT, as will

be shown in Section VI.

It has been pointed out by G. W. Small of the

National Standards Laboratory [9] that if a reasonable

assumption is made about the harmonic of order h

( = N/2), one phase of this harmonic may be assigned a

zero value and the N equations can then be solved for

the flap value and the remaining N – 1 coefficients of

the harmonic components of the correction curve. A

comparison made between this and the iterative proce-

dure described above showed a negligible difference

between the results obtained by the two methods.

IV. CHOICE OF FLAP VALUE

The flap value is not critical and without loss of

accuracy may be set anywhere between upper and lower

bounds. At the low end this range is limited chiefly by

the dial resolution of the PSUT. After investigating

typical cases using an artificial model for the PSUT, it

was found, for instance, that for a PSUT having a maxi-

mum error of 0.5°, a flap value smaller than 10° should

not be used unless the dial resolution is better than 0.10.

An upper limit for the flap value is set by the fact that

the measurement is not capable of observing a harmonic

component of the correction curve that is periodic in

flap length.

It has been found that for calibrating phase shifters

of quality presently available, a good compromise be-

tween accuracy and time taken to complete a measure-

ment is obtained by taking 36 or 40 pairs of points, cor-

responding to stepping intervals of 10° or 9°, respec-

tively. In these cases, the respective highest computable

harmonics are the 18th and the 20th; thus the maximum

flap lengths should be under 20° or 18°.

V. ACCURACY

Both the Fourier and the interpolation methods have

been tested extensively using artificial correction curves

made up either of combinations of sinusoids or of tri-

angular or other pulses. For the sinusoidal form,

C(a) = A 1 sin (mla + @l) + A2 sin (mxx + dw)

+ .-. + AN sin (m~a + oiv). (13)

A simulated measurement is carried out by stipulat-

ing a flap value F and interval I and using a computer

to find every Qi, the reading at which the true phase

shift differs from that at Pi by F, according to (1). As

C(a) is given by (13), (1) becomes transcendental and

must be solved by iteration for Q{.

4 It is a property of Fourier analysis to fit a set of points by each
harmonic in a least-squares sense.
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Fig. 3. . Correction curves for a rotary phase shifter measured at five frequencies and computed by the Fourier method. (a) Complete cor-
rection curves computed both by the Fourier method using the first 20 harmonics and by the interpolation method. Points by the inter-
polation method, which differed by more than O.O1° from the Fourier result, are shown individually. (b) “Electrical” errors; the resultant
of the 1st, 2nd, 3rd, 4th, and 16th harmonics. (c) “Mechanical” errors; the resultant of the 6th, 12th, and 18th harmonics. Note that these
components are independent of frequency in both amplitude and phase.

These values of Pi and Qj were then regarded as

“measured data” and a correction curve was computed.

Inspection of the Fourier components of this curve

revealed that the ‘(unwanted” components [i. e., those

absent from the original correction curve (13) ] were at

least 104 times smaller than the “genuine” components.

The maximum inconsistency D;m.x (see Section III-B)

was also used to assess the goodness of fit. If harmonics

up the highest possible order are used, a “perfect-fit”

solution results, with D;m.x tending to zero. (usinga
small computer with a 23-bit fraction, the final value

of ~~~ax is about 3. 10–8 degrees.)

In these tests, the computed flap value was, on the

average, within O.OOO1° of the known stipulated value.

This proves that when an actual phase shifter is cali-

brated by this method, the overall accuracy is governed

by the resolution and reproducibility of the phase shifter

itself, which for presently available phase shifters is

about 0.05°.

In a typical test of the interpolation method, a cor-

rection curve was used consisting of a triangular pulse

90° wide and 3° high. For I = 10° and F= 10.5°, this

curve was reproduced after two iterations with a maxi-

mum error of O.O1OO and Dim=== O.OO1°. The flap value

was found correctly to within 0.00020. After four itera-

tions, Dimax had fallen to O.OOO1°, but the maximum

error increased slightly to 0.011°. The flap value did not

change.

In the foregoing it has been assumed that the PSUT

is fully isolated and is operated between matched ports.

Additional errors will be introduced if the ports are

mismatched, but this limitation is common to all meth-

ods of phase-shifter calibration and the limits of error

are readily calculable.

VI, RESULTS

The results of the calibration of a modified commer-

cial X-band rotary phase shifter are shown in Fig. 3.

The Fourier spectrum of the computed correction curve

at 8 GHz is shown in Fig. 4. At all the five frequencies
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Fig. 4. Fourier spectrum of the computed correction curve
at 8 GHz, shown in Fig. 3(a).

of measurement the dominant components were found

to be the lst, 2nd, 3rd, 4th, 6th, 12th, 16th, and 18th

harmonics. Because this phase shifter was constructed

with a reduction gear requiring six rotations of the dial

for a 360° phase shift, it was suspected that the presence

of the 6th harmonic and its multiples was due to me-

chanical errors. Closer inspection of the five Fourier

spectra revealed that the 6th harmonic and its multiples

are independent of frequency, both in amplitude and

phase [see Fig. 3(c) ], proving their mechanical origin.

In Fig. 3(b) the res~ltant curves of the lst, 2nd, 3rd,

4th, and 16th harmonics are shown, labeled “electrical”

errors, which are frequency dependent. The most likely

causes of the low-order components of the “electrical”

error are imperfect conversion to and from circu Iar

polarization by the quarter-wave sections and internal

reflections. For example, two end reflections with ampli-

tudes of 0.04 would cause a second harmonic of the error

spectrum of about 0.10. The presence of the 16th har-

monic is interesting. It was found at all five frequencies

of measurement with an almost constant amplitude, but

with a slowly varying phase. It is believed that this

error component is caused by TE1b,n evanescent modes,

which are preferentially set up by two diametrically

opposed O. l-in wide slots in the l-in diameter rotating

section, required for broad-banding.

To show that the computed correction curve is char-

acteristic of the instrument and not of the method of
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computation, Fig. 3(a) displays the results of computa-

tions by both the Fourier and the interpolation methods.

Points by the interpolation method that differed by

more than O.O1° from the Fourier result are shown

individually.

VII. CONCLUSION

A new method of calibrating microwave rotary phase

shifters has been described, which does not require the

use of a standard phase shifter. Instead, a highly re-

peatable phase step, realized as a dielectric flap, is used

to measure differences of nominal phase shift spaced

around the dial of the phase shifter under test. This

method has the advantage that the calibration may be

carried out at any frequency without the need for prior

tuning of a phase standard. All that is needed when

changing frequency is to rematch the ports facing the

phase shifter under test. No knowledge of A. is necessary

to complete a calibration.

Two methods of computing the calibration curve have

been presented. It has been shown that the Fourier

method is able to separate the “mechanical” from the

‘{electrical” errors and it gives the calibration curve of

the instrument in an explicit form. Thus the calibration

is available at any point without interpolation. The

measurement procedure is simple and repetitive and is

insensitive to long-term drifts.

The method described results in calibration curves of

high accuracy and, so far, of unparalleled detail.
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